vrijdag 1 april 2011

Euler problem 53


There are exactly ten ways of selecting three from five, 12345:
123, 124, 125, 134, 135, 145, 234, 235, 245, and 345
In combinatorics, we use the notation, 5C3 = 10.
In general,
nCr =
n!
r!(n−r)!
,where r ≤ nn! = n×(n−1)×...×3×2×1, and 0! = 1.
It is not until n = 23, that a value exceeds one-million: 23C10 = 1144066.
How many, not necessarily distinct, values of  nCr, for 1 ≤ n ≤ 100, are greater than one-million?


 performance improvements:

 1) add break:               12374 us -> 880 us
 2) let minimun n=23, r=4: 880 us -> 277 uS



Problem 53 =        4075 elapsed time:    0 ms. Test Passed.



Geen opmerkingen:

Een reactie posten